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Abstract

A class of two-qubit states called X-states are increasingly being used to
discuss entanglement and other quantum correlations in the field of quantum
information. Maximally entangled Bell states and ‘Werner’ states are subsets
of them. Apart from being so named because their density matrix looks
like the letter X, there is not as yet any characterization of them. The
su(2) × su(2) × u(1) subalgebra of the full su(4) algebra of two qubits is
pointed out as the underlying invariance of this class of states. X-states are
a seven-parameter family associated with this subalgebra of seven operators.
This recognition provides a route to preparing such states and also a convenient
algebraic procedure for analytically calculating their properties. At the same
time, it points to other groups of seven-parameter states that, while not at first
sight appearing similar, are also invariant under the same subalgebra. And it
opens the way to analyzing invariant states of other subalgebras in bipartite
systems.

PACS numbers: 03.67.−a, 02.20.Sv, 02.40.−k, 03.65.Ud

1. Introduction

Increasingly in the field of quantum information, aspects of entanglement [1], and of other
quantum correlations such as, for instance, ‘quantum discord’ [2–4], between two qubits have
been described for a class of pure and mixed states that have come to be called ‘X-states’
[5–7]. Although their use goes back further [8–12], they were so named in [7] because of the
visual appearance of the density matrix, that it looks like the letter in the alphabet:

ρ =

⎛
⎜⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞
⎟⎟⎠ . (1)

Non-zero entries occur only along the diagonal and anti-diagonal. Many calculations
of entanglement and other properties [8–16], and their evolution under unitary or dissipative
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processes [17–25], can be carried out analytically for such states which make them appealing
objects for study. Many other states of interest, such as the maximally entangled Bell states [1]
and ‘Werner’ states [26], are a sub-class of X-states, lending further importance to their study.
A more general class, depending on three rather than the one-parameter family of Werner
states, for which quantum discord has recently been calculated [14, 27] are also a subset of
X-states.

Yet, no firmer definition has been given of what makes a pure or mixed system an X-
state. This paper provides such a definition in terms of their invariance properties, that a
particular symmetry group or algebra underlies them. Such an identification of an underlying
symmetry helps to explain the analytical results while at the same time providing a well-
defined procedure for their preparation. Recognizing the symmetry also makes computations
involving such states, such as unitary operations on them or evaluating concurrence or other
measures of entanglement, straightforward and easily tractable. And, finally, the symmetry
also opens the way for constructing other density matrices which may not visually appear as
X, but are nevertheless similar, states of a different rendering of the same algebraic symmetry.
Since they differ in entanglement and separability considerations, they may prove useful for
study.

2. The subalgebra of X-states

Positivity and other standard requirements of any density matrix make the X-states shown in
equation (1) a seven-parameter family. The diagonal elements of the density matrix are real so
that, along with the trace being fixed at 1, three real parameters describe those diagonal entries.
Hermiticity to guarantee real eigenvalues reduces the off-diagonal entries to two complex (say
ρ14 and ρ23, with ρ41 and ρ32 their respective complex conjugates) or four real parameters for
the total of seven real parameters.

The full two-qubit system has the symmetry of the SU(4) group and its algebra su(4).
Fifteen operators, most conveniently rendered as 15 linearly independent 4 × 4 matrices or
as Pauli spinors/matrices of the two spins, together with the unit matrix, provide a complete
description of the general system. There are, however, several subalgebras of su(4). A series
of recent papers have provided a geometrical description of their states and operators [28–33].
In particular, one subalgebra, su(2) × su(2) × u(1), of seven operators or matrices occurs
in many physical systems in quantum optics and quantum information [28, 29]. This paper
presents them as the invariance set of the X-states.

Inspection of the explicit 4 × 4 matrices in a standard basis for two spins, (| ↑↑〉, | ↑↓〉,
| ↓↑〉, | ↓↓〉), is instructive [28, 29, 34, 35] and points immediately to sets of seven of them
with the same structure of eight zeros in the same positions as in equation (1). That is, these are
the operators that do not mix the 1–4 and 2–3 subspaces of the density matrix. Combined with
the observation that such a set of seven matrices closes under multiplication, it is immediate
that they will carry X-states into each other, that they preserve the X structure. For this
purpose, both the Lie algebra aspect that the seven operators close under commutation and
their Clifford algebraic structure that they close under multiplication are important. Indeed,
explicit rendering of the 15 operators in terms of two Pauli spinors called �σ and �τ , together with
the familiar multiplication rule σiσj = δij +iεijkσk, i, j, k = 1−3, where εijk is the completely
antisymmetric symbol and repeated indices are summed, is very useful for operations with
them.

There are many such sets of seven operators/matrices constituting the su(2)×su(2)×u(1)

subalgebra [28, 29, 33]. In each of them, one operator, the u(1) element, commutes with all
six of the others which themselves can be further subdivided as shown in [28] into two sets
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of ‘pseudospins’, two sets of three which obey commutation relations of angular momentum
within each set while all three of one set commute with all three of the other. Any one of the
15 operators can serve as the commuting element because, as shown in a table in [29], each
row has six zeros so that each identifies such a su(2) × su(2) × u(1) set. There are, therefore,
15 such non-equivalent subalgebras.

We will designate such a set by {Xi}, i = 1, 2, . . . , 7, with X1 the commuting element. One
such is (X1 = σzτz,X2 = σyτx,X3 = τz,X4 = −σyτy,X5 = σxτy,X6 = σz,X7 = σxτx).
This is the same set that occurs in the CNOT quantum logic gate constructed out of two
Josephson junctions and was extensively studied in that context [28]. It was also pointed
out that it occurs in nuclear magnetic resonance when each spin is in an external magnetic
field in the z-direction while being coupled to each other through scalar coupling �σ · �τ and
‘cross-coherences’ σxτy and σyτx . But a different choice for the commuting element X1 gives
another such subalgebra, and we will return to this in section 4. Each Xi is traceless, Hermitian,
and unitary, and its square is unity so that the eigenvalues are (±1,±1).

With any such set {Xi}, the density matrix that remains invariant under their operations
can be rendered as a linear superposition of them,

ρ = (I + �igiXi)/4, (2)

in analogy to that for a single spin, (I + �igiσi)/2. The seven real coefficients gi in
equation (2) parametrize X-states and are equivalent to the seven parameters in the density
matrix in equation (1):

g1 = (ρ11 + ρ44) − (ρ22 + ρ33),

g2 = 2i(ρ14 − ρ41 + ρ32 − ρ23),

g3 = (ρ11 − ρ44) − (ρ22 − ρ33),

g4 = 2(ρ14 + ρ41 − ρ32 − ρ23),

g5 = 2i(ρ14 − ρ41 − ρ32 + ρ23),

g6 = (ρ11 − ρ44) + (ρ22 − ρ33),

g7 = 2(ρ14 + ρ41 + ρ32 + ρ23).

(3)

The algebra of the seven {Xi} is most conveniently captured by figure 1 as has recently
been pointed out [33]. This figure occurs in projective geometry as the ‘Fano Plane’ [36]
and also is used to represent the multiplication table for octonions [37–40]. Arranging the
seven operators at the vertices, mid-points of sides and in-center of an equilateral triangle, the
seven lines shown (including the inscribed circle) each pass through three points, providing
the multiplication rule for those {Xi}. The notation of arrows is also borrowed from octonions
except that unlike them which have all seven lines arrowed, the three internal verticals are
not in figure 1. On those lines, all three operators mutually commute, so that the product
of two gives the third regardless of order. On the four arrowed lines, the operators mutually
anticommute so that the product of two gives (±i) times the third, with plus (minus) signs
along (against) the sense of the arrow. For this purpose, each line is regarded as a closed
loop with a continuously circulating arrow. The central element commutes with all six of the
others. For each of those, there is one ‘conjugate’ element with which it commutes and four
with which it anticommutes. All of this can be read off by merely glancing at figure 1 and
will provide simple rules for their manipulation in the next section.
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Figure 1. The multiplication diagram for the seven operators that underlie X-states. Resembling
the Fano Plane and the multiplication diagram for octonions, each operator stands on three lines,
and each line, including the inscribed circle, has on it three operators. On the interior verticals,
the product of any two operators gives the third, these objects commuting. On the remaining four
lines, the operators anticommute, and the product of any two gives the third with a multiplicative
±i, the plus (minus) depending on the direction of (along/against) the arrow [33].

3. Manipulating density matrices with the elements of the subalgebra

The Clifford algebra structure and its diagrammatic rendering in figure 1 make operations on
the density matrix of X-states very simple. Thus, because X1 commutes with all the operators
in equation (2), X1ρX

†
1 leaves that ρ unchanged. For any of the other six cases, XiρX

†
i , three

coefficients in equation (2) remain unchanged (those belonging to that i, its conjugate, and
1, that is, sharing an unarrowed line in figure 1) while the other four are switched to their
negative. As an example of another common operation which occurs, for instance, in the
evaluation of ‘concurrence’ [41, 42] or ‘quantum discord’ [2], ρ̃ = σyτyρ

∗σyτy can also be
written down from equation (2) without any calculation. This involves X4(= −σyτy). In
figure 1, this element is connected to i = 2, 3, 5, 6 by arrows so that those coefficients gi

have their signs changed by this operation. But the additional complex conjugation involved
changes signs again for i = 2, 5 whose Xi in equation (2) are pure imaginary for this set:
X2 = σyτx,X5 = σxτy . As a result, ρ̃ differs from ρ in equation (2) by just flipping the sign
of i = 3, 6. In like manner, all such operations become almost automated.

Next, in evaluating the concurrence, one needs the eigenvalues of ρρ̃. With the products
of {Xi} staying within the algebra and again easily written down from figure 1, ρρ̃ is again a
linear combination of the form of equation (2). The square roots of the four eigenvalues of
this matrix turn out to be

1
4

[√
(1 + g1)2 − (g3 + g6)2 ±

√
((g2 + g5)2 + (g4 + g7)2

]
1
4

[√
(1 − g1)2 − (g3 − g6)2 ±

√
((g2 − g5)2 + (g4 − g7)2

]
.

(4)

Note the appearance of the combinations of conjugate pairs 2–5, 3–6 and 4–7 of figure 1
(and, of course, 1 with the unit element). Arranging the quantities in equation (4) in decreasing
order and subtracting the sum of the last three from the highest provides the concurrence for
any X-state.

A prescription for creating X-states from a general density matrix can also be easily
provided. Each of the 15 operators of su(4) commutes with six and anticommutes with eight
of the others [28, 29]. Thus, X1 which commutes with the six in the su(2) × su(2) × u(1)

set necessarily anticommutes with all the eight left out of this set. As a result, in a general
density matrix ρ of two qubits with all elements nonzero, action by this element, X1ρX

†
1,

changes the signs of the entries in those eight positions which have zeros in equation (1), while
leaving other coefficients unchanged. As a result, starting from any general ρ, adding to it
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X1ρX
†
1 will generate an X-state. Thus, X1 is the ‘generator’ of its associated X-states and also

provides an operational way of making the state, starting from a general density matrix. The
action of X1(= σzτz) is, of course, the simultaneous unitary rotation through π of both spins
achieved by a suitable magnetic field. Similar physical operations are easily described for
other realizations of a two-level system or qubit in place of spins. In this manner, a convenient
procedure for experimentally realizing X-states can be given.

In studying the dynamics of two qubits, such as entanglement evolution in the presence
of dissipative processes, Kraus or other operators are involved. With these also expressible in
terms of the set {Xi}, the X-structure of the states is preserved, as has been exploited in these
studies of the finite-time end of entanglement and methods to overcome it [17–25].

4. Other classes of ‘X-states’

The identification above of the ‘standard’ (as commonly used) X-states with the element
X1 = σzτz immediately points to several other groups of states having the same characteristic
of an invariant algebra of su(2) × su(2) × u(1) but with different choices for X1. As already
observed, any of the 15 operators of su(4) can be chosen for X1. One, for instance, is to
choose for this element σz. The other six members of this su(2) × su(2) × u(1) subalgebra
are (�τ , σz�τ). All these matrices and the resulting density matrix that is invariant in form under
their operations are now block diagonal 4 × 4 matrices, with all eight elements in the two
off-diagonal blocks zero:

ρ =

⎛
⎜⎜⎜⎜⎝

ρ11 ρ12 0 0

ρ21 ρ22 0 0

0 0 ρ33 ρ34

0 0 ρ43 ρ44

⎞
⎟⎟⎟⎟⎠

. (5)

While not looking like the X in equation (1), they now stand for a decoupling of the 1–2
and 3–4 subspaces, different from that in equation (1). In terms of the basis states, they can
now be very different in separability and entanglement properties, grouping (| ↑↑〉, | ↑↓〉) and
(| ↓↑〉, | ↓↓〉) together instead of (| ↑↑〉, | ↓↓〉) and (| ↑↓〉, | ↓↑〉) as in maximally entangled
Bell states. Nevertheless, algebraically they are also invariant sets of an su(2) × su(2) × u(1)

algebra.
Even more interestingly, an X-state need not have any zeros in its density matrix! Thus,

the choice (X1 = σxτx,X2 = σzτy,X3 = τx,X4 = −σzτz,X5 = σyτz,X6 = σx,X7 = σyτy)

built on commuting element X1 = σxτx is equally valid as an X-state with the same invariance
algebra, although its density matrix has no zero entries:

ρ = 1

4
I +

1

4

⎛
⎜⎜⎜⎜⎝

−g4 g3 − ig2 g6 − ig5 g1 − g7

g3 + ig2 g4 g1 + g7 g6 + ig5

g6 + ig5 g1 + g7 g4 g3 + ig2

g1 − g7 g6 − ig5 g3 − ig2 −g4

⎞
⎟⎟⎟⎟⎠

. (6)

Its preparation, by adding to ρ a transformation under X1(= σxτx), and its manipulation or
calculation of concurrence and other properties, all proceed as in section 3, the density matrix
staying within this su(2) × su(2) × u(1) subalgebra. Indeed, as can be seen by comparing
the two sets of {Xi}, it differs from the ‘standard’ set merely by a cyclic permutation of the
indices (x, y, z) which means two π/2 rotations of axes, first clockwise with respect to y
and then counter-clockwise with respect to an intermediate z axis. Alternatively, this can be
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represented as the application of π pulses to the spins. Clearly, the physics is unchanged with
mere change of bases or permutation of the labels of the coordinate axes.

Entanglement, discord [27] and other investigations of these other sets will be of interest.
A natural extension for further investigation is to analyze similarly sets of invariant states of
other subalgebras of su(4) such as su(3) and so(5) [30–32]. The recognition of invariant
sets opens a new window into such studies, focusing on what is essential and what are simply
changes in bases and representations.

Acknowledgments

I thank Mr Mazhar Ali, and Drs Gernot Alber and Joseph Renes for discussions and for their
hospitality at the Technical University, Darmstadt, during this work. This work was supported
by the Alexander von Humboldt Foundation.

References

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge
University Press)

[2] Ollivier H and Zurek W H 2002 Phys. Rev. Lett. 88 017001
[3] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[4] Maziero J, Celeri L C, Serra R M and Vedral V 2009 arXiv:0905.3396
[5] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[6] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[7] Yu T and Eberly J H 2007 Quantum Inform. Comput. 7 459
[8] Bose S, Fuentes-Guridi I, Knight P L and Vedral V 2001 Phys. Rev. Lett. 87 050401
[9] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901

[10] Pratt J S 2004 Phys. Rev. Lett. 93 237205
[11] Gu S J, Tian G S and Lin H Q 2005 Phys. Rev. A 71 052322
[12] Wang J, Batelaan H, Podany J and Starace A F 2006 J. Phys. B: At. Mol. Opt. Phys. 39 4343
[13] Dillenschneider R 2008 Phys. Rev. B 78 22413
[14] Luo S 2008 Phys. Rev. A 77 042303
[15] Sarandy M S 2009 arXiv:0905.1347
[16] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 arXiv:0905.3376
[17] Jakobczyk L and Jamroz A 2004 Phys. Lett. A 333 35
[18] Franca Santos M, Milman P, Davidovich L and Zagury N 2006 Phys. Rev. A 73 040305
[19] Jamroz A 2006 J. Phys. A: Math. Gen. 39 727
[20] Ikram M, Li F L and Zubairy M S 2007 Phys. Rev. A 75 062336
[21] Al Qasimi A and James D F V 2007 Phys. Rev. A 77 012117
[22] Rau A R P, Ali M and Alber G 2008 Europhys. 82 40002
[23] Cao X and Zheng H 2008 Phys. Rev. A 77 022320
[24] Lopez C E, Romero G, Castra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[25] Ali M, Alber G and Rau A R P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 025501
[26] Werner R F 1989 Phys. Rev. A 40 4277
[27] Ali M, Rau A R P and Alber G 2009 to be published
[28] Rau A R P 2000 Phys. Rev. A 61 032301
[29] Rau A R P, Selvaraj G and Uskov D 2005 Phys. Rev. A 71 062316
[30] Uskov D and Rau A R P 2005 Phys. Rev. A 74 030304
[31] Uskov D and Rau A R P 2008 Phys. Rev. A 78 022331
[32] Vinjanampathy S and Rau A R P 2009 arXiv:0906.1259
[33] Rau A R P 2009 Phys. Rev. A 79 042323
[34] van de Ven F J M and Hilbers C W 1983 J. Magn. Reson. 54 512
[35] Zhang J, Vala J, Sastry S and Whaley K B 2003 Phys. Rev. A 67 042313
[36] Beth T, Jungnickel D and Lenz H 1985 Design Theory, Vols. 1 and 2, Encyclopaedia of Mathematics vol 69
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